
Drawing With Operation Space Impedance Control
Chris Evagora Saim Naveed Iqbal Steve Carter Feujo Nomeny

Abstract—This project aims to implement an operation space
impedance controller with inertia shaping on the KUKA iiwa.
An operation space impedance controller imposes mass-spring-
damper dynamics on the end effector, which is beneficial in tasks
where you want to be in contact with the environment. A working
impedance controller implemented, and tested by making the
robot draw different trajectories on an uneven surface, without
perception. We also test drawing in the case where we have
perception, and see that this increases performance.

I. INTRODUCTION

While the field of robotics strives to enable interactions
with the real world, many implementations of industry robots
still avoid contact with the environment. This is due to a
number of reasons. For one, these robots can exert large forces,
and if control is not implemented carefully they may damage
the workspace, or in the worst case harm nearby operators
or collaborators. Real-world environments are complex and
unpredictable, making safe and efficient interactions with
robots a difficult task. Therefore, one usually opts to design
for a system that avoids contact entirely, removing the risk of
exerting excessive force or encountering contact instability.

This is unfortunate as many tasks require contact such as
painting, polishing, or sanding a surface. Contact can even
enable nonprehensile manipulation which can allow us to
solve much more sophisticated problems. A common solution
to this problem is to introduce compliant behavior through
what is called impedance control. In operation space, an
impedance controller can impose virtual dynamics on the end
effector, making it behave equivalently to mass-spring-damper-
system. In addition to mitigating the risks associated with
direct contact, impedance control allows following a trajectory
without the use of inverse dynamics, by changing a virtual
setpoint for the mass-spring-damper system.

To gain a deeper understanding of this control paradigm, we
wish to implement OSC on the KUKA iiwa from scratch by
directly controlling the torques applied at each joint. Through
a force sensor placed before our end effector, we can even
shape the inertia of the end effector during acceleration of the
end effector due to external forces. The goal of OSC is to
completely cancel the dynamics of the robot and replace it
with desired dynamics, that of a 6-axis spring, mass, dashpot
system for both orientation and position.

To test the effectiveness of our controller, we created a
system that can draw an arbitrary trajectory on an unknown
surface. Without the use of perception, we can use our
orientation space pose error to trace curves on surfaces we do
not know much about. By placing our desired position loosely
beneath the surface which we want to draw on, we can rely

on our operation space impedance control to drive the robot to
the surface and apply a controllable force to it. Additionally,
we add simple perception to our system, to test whether that
will improve the performance.

II. RELATED WORK

Impedance control is a relatively old control paradigm,
developed by researchers such as Neville Hogan in the 1980’s
[1]. Many real world implementations of force controllers do
not program the experienced mass at the end effector, only the
stiffness and damping, known as stiffness control. This is due
to impedance control requiring expensive matrix inversions for
inertia shaping as well as a high bandwidth force sensor at the
end effector to appropriately scale external forces. Often, the
added complexity does not justify the gain in performance. Our
implementation began with the inspiration to fully implement
OSC, including inertia shaping and force feedback using
Drake’s built-in multibody plant. On real hardware this would
require a 6 DOF inline force plate which connects our robot
to our end effector.

Even though drawing is a fairly niche subset of contact-
based tasks, there has still been research on making robot
arms draw. Some existing implementations use a hybrid force-
position control [2] [3], which requires the surface to be
known. Others have been able to achieve drawing on arbitrary
surfaces using impedance control. We believe our implemen-
tation can operate in more general environments compared
to previous work as our controller doesn’t require any prior
knowledge of the surface since we do not project the desired
drawing trajectory on to the surface.

Additionally, we propose a method to integrate basic percep-
tion and use surface normal estimates of the drawing surface
to increase performance. By doing so, our approach not only
addresses the limitations of existing robotic control strategies
but also enhances the robot’s adaptability and accuracy in real-
time, particularly in environments with complex or unknown
geometries.

III. APPROACH

A. Simulation

We implement our solution in Drake, on the KUKA iiwa. A
pen is welded to the last link of the iiwa, and a writing system
is implemented. We design a bowl to act as our canvas, and
add it to our scene. Finally we added 3 cameras, to capture a
point cloud of our canvas. The complete system can be seen
in 1. The most notable systems are the controller itself and
the normal estimation, which we will explain more in depth.
To cresimp



Fig. 1: System diagram

B. Operation Space Control

We begin with our desired dynamics in operation space,
with desired mass, damping, and spring matrices Mdes, Bdes,
and Kdes respectively. Our operation space state variable
includes both position and orientation, making each of the
matrices above a 6x6 block matrix with the upper left 3x3
matrix for spatial moments and the lower right 3x3 matrix for
spatial forces.

Mdesẍ−Bdes(ẋdes − ẋ)−Kdes(xdes − x) = Fext (1)

This is in juxtaposition to our actual robot dynamics, which
is expressed in generalized coordinates, or joint space. We
quantify the effects of torque applied at the motors and the
presence of an external wrench at the end effector.

Mq q̈ + V (q, q̇) = τmotor + JTFext (2)

This can be rewritten in terms of commanded wrench Fact

which can be realized as motor torques through multiplication
with the Jacobian transpose of the end effector with the
commanded wrench Fact.

Mq q̈ + V (q, q̇) = JT (Fact + Fext) (3)

Isolate q̈ from (3).

q̈ = −M−1
q V (q, q̇) +M−1

q JT (Fact + Fext) (4)

Recall the definition of the Jacobian of the end effector.

ẋ = Jq̇ (5)

Differentiate ẋ to get acceleration in the task space.

ẍ = J̇ q̇ + Jq̈ (6)

Plug (4) into (6) to get ẍ, the acceleration in the task space
given commanded wrench Fact.

ẍ = JM−1
q JT (Fact + Fext)− JM−1

q V (q, q̇) + J̇ q̇ (7)

Define Mx to simplify future expressions.

Mx = (JM−1
q JT )−1 (8)

Rearrage equation (7) with Mx.

Mxẍ+MxJM
−1
q V (q, q̇)−MxJ̇ q̇ = Fact + Fext (9)

Recall desired dynamics (1), isolate ẍ and insert into (9).

MxM
−1
des(Bdes(ẋdes − ẋ) +Kdes(xdes − x) + Fext)+

MxJM
−1
q V (q, q̇)−MxJ̇ q̇ − Fext = Fact (10)

Combine like terms and find Fact, the required wrench at
the end effector in order to impose virtual dynamics from (1).

Fact = MxM
−1
des(Bdes(ẋdes − ẋ) +Kdes(xdes − x))+

MxJM
−1
q V (q, q̇)−MxJ̇ q̇ + (MxM

−1
des − I)Fext (11)

Now find joint torques that give Fact at the end effector.
This is sent to the robot to achieve OSC.

τmotor = JTFact (12)

With our implementation, finding the force Fext on the
end effector proved to be more complex and not as useful
as originally thought. In OSC, measuring the external wrench
on the end effector allows for amplification of that wrench
in the directions of higher robot inertia and attenuation in
directions of lower robot inertia such that the overall inertia
of the end effector appears as desired in the imposed virtual
dynamics. In the case of drawing on a nearly flat surface, the
effects of the robot’s inertia in different directions does not
affect much the operation of drawing since the acceleration
of the end effector while tracking is very small. Originally,
Fext was going to be measured from the ”reaction forces”
output of the iiwa multibody plant. This did not quite work
as planned because spatial forces are still exerted on the end
effector despite the absence of contact since gravity always
acts on all bodies. In the derivation of OSC above, gravity is
not accounted or compensated for. This can be supplemented
with a parallel gravity compensation controller which sums
its commanded joint torques with the OSC, except for the fact
that the multibody plant will still measure a reaction force at
the end effector due to gravity. It was therefore decided to not
include force feedback into this implementation of OSC since
it did not help with performance.

In order to track the desired trajectory on the unknown
surface, a rough point cloud of the surface is captured with
depth imaging cameras, downsampled, and processed to find
surface normals for the k nearest neighbors to the end effector.
The end effector as well as the virtual spring mass damper
system parameters are rotated to meet with the surface perpen-
dicularly. Upon coming into contact with the surface as shown
in Figure 2, the controller switches from trying to track the
desired pose in the trajectory to tracking the orientation of the
surface normal as well as the closest point on the Z-axis of
the desired pose in the trajectory, which in our case is usually
aligned with the world Z-axis.



The translational error vector e⃗ shown in Figure 2, given
the position of the end effector p⃗e, the position of the desired
pose p⃗d, and the unit length z-axis of the desired pose z⃗, can
be calculated as:

e⃗ = (z⃗ × (p⃗d − p⃗e))× z⃗ (13)

Fig. 2: Commanded actuated force and virtual external force
when in contact. Commanded force F act is the translational
error defined in equation (13), scaled and projected onto the
plane of contact. Z-axis of the end effector is driven to be
coaxial with surface normal.

Fig. 3: Commanded actuated force when not in contact. This
controller mode is also used in contact when there is no
perception since contact cannot be detected well. Orientation
of desired pose is also tracked.

This error vector is passed as the position error to the OSC.
The gains for the translational spring, mass, dashpot system
are chosen such that the spring constant in the Z-axis of the
end effector while in contact is set to zero. The force that the
error vector produces when multiplied by the desired stiffness

matrix, Kd, therefore projects the error vector into the plane
normal to the surface where the end effector is in contact. This
ensures that all corrective forces, Fact, tracking the projection
of the trajectory along the Z-axis of the desired pose act only
tangentially to the surface.

Contact is detected when our end effector is calculated to be
within a certain distance from the nearest point in the cloud.
While in contact, a virtual force is injected into Fext to make
the robot push into the surface with a constant force. Alongside
this, the spring constant aligned with the Z-axis in task space
is set to zero to allow Fext to push the end effector into the
surface.

C. Jacobian Null Space Controller

Since we are commanding torques to control the pose of
the end effector in space, we require 6 DOF to be fully
actuated. The IIWA robot by KUKA is a 7 DOF robot arm
that must have its last DOF controlled to prevent potential
stability or kinematic problems. For this a null space position
controller was added to fill the gaps of the OSC. Using
the dynamically consistent generalized psuedo inverse of the
Jacobian of the end effector, described in detail by studywolf
[5], we can constrain the last DOF. We define a nominal robot
configuration and apply a PID controller to command joint
torques to reach this configuration:

q0 = [0, 0, 0, 0, 0, 0, 0] (14)

τmotor = Kp · (q0 − q) +Kd · (−q̇) (15)

We then calculate the psuedo inverse of the Jacobian trans-
pose and use it to project the desired torque vector of the PID
controller into the null space of the Jacobian.

JT+ = MxJM
−1
q (16)

τmotor,projected = (I − (JTJT+))τmotor (17)

The output of the projection is simply summed with the
output of the OSC, as well as the gravity compensation
controller trivially implemented in drake, to produce the final
output torque vector sent to the IIWA.

D. Normal Estimation

In the normal estimation step, the objective is to compute
the surface normal for each point in the point cloud. This is
achieved through the following steps:

1) Nearest Neighbors Search: For a selected query point
q in the point cloud, this is the tip of the pen in our
case, a k-d tree is used to find its k nearest neighbors,
forming a local neighborhood N(q).

N(q) = KDTree(PointCloud).query(q, k) (18)

2) Principal Component Analysis (PCA): Apply PCA on
the points in N(q) to compute the covariance matrix.
The covariance matrix is then decomposed to find its
eigenvalues and eigenvectors.

Cov(N(q)) =
1

k

∑
p∈N(q)

(p− µ)(p− µ)T (19)



where µ is the mean of the points in N(q).
3) Normal Vector Determination: The normal vector at

q is identified as the eigenvector corresponding to the
smallest eigenvalue, as it represents the least variance
direction in the local neighborhood.

4) Orientation Adjustment: Ensure that the normal vector
is oriented towards the camera. If the dot product of
the normal vector with the vector from the point to
the camera position is negative, the normal vector is
inverted.

Following these steps we can accurately estimate the nor-
mals of the surface represented by the point cloud.

IV. RESULTS

We test the fully implemented system with a two different
trajectories, one resembling a sine wave, the other in the shape
of an ”M”. The controller is tested in both the case where we
have perception, and the case when we don’t. The performance
of the controller is rated qualitatively, by looking at the quality
of the drawing.

Figure 4 shows the resulting drawing when the trajectory
reference is a sinusoidal wave, and the normal estimation is
used. We see that the robot manages to track the trajectory
fairly well, even at the steepest parts of the surface. We see
a similarly good performance when testing other trajectories.
When turning off the rotation of forces and end effector, and
only relying on the stiffness of the system to track the surface,
we see that the quality of the drawing is reduced. This is clear
in figure 6. We see that the we have less consistent contact
with the surface, in addition to what appears to be some slight
distorion caused by the surface.

Fig. 4: Resulting drawing when end effector and virtual
dynamics parameters are rotated perpendicular to surface.
Coarseness of sinusoid is due to underlying trajectory only
having 10 setpoints along trajectory.

Fig. 5: Resulting drawing for an M-shaped trajectory for
rotated parameters.

Fig. 6: Resulting drawing without rotating end effector or
virtual dynamics parameters.

V. DISCUSSION

Our solution gives us the desired result: a robot that is
able to draw on a surface without needing any knowledge
about it. This shows that impedance control is quite powerful
tool in enabling control. We believe our implementation could
be expanded to other use cases, such as engraving, cutting,
polishing or other tasks where you want to follow a path along
a surface. We do however see that the completely blind result
isn’t perfect, as it is difficult to maintain contact at all points
along the surface.

Adding perception and using it to rotate the stiffnesses
makes the drawing demonstrabely better. However, as we
compute normals in each time step, it impacts performance
greatly. Of course this can be optimized, but there will still be
a tradeoff between computational load and the quality of the
controller. Whether or not the sacrifice in runtime is worth it
will be dependant on application, as in some cases one may
prefer perfect tracking, or perhaps one would like to avoid
exerting forces in non-tangential directions.

The simulation environment was established with three
cameras, each capturing a snapshot of the scene and recording
the surface’s point cloud (excluding the iwaa), for subsequent
runtime usage. Since the environment is static, we do not need
continuous capture. In scenarios where the surface is subject
to dynamic changes, continuous point cloud acquisition is



imperative. This allows for real-time adjustments in normal es-
timation and trajectory planning, accommodating the dynamic
nature of the environment. While this adds computational
and logical complexity, it significantly enhances the system’s
robustness.

Finally, our controller was only tested on one surface, and
on two relatively simple shapes. As such, we do not truly
know the limits of our implementation. Much time went into
developing the controller itself, if we had more time we would
have liked to test it with more complex surfaces or trajectories.
We imagine our controller would struggle with less smooth
surfaces, or surfaces with very steep slopes. Still, we are very
satisfied with the performance.

VI. CONCLUSION

While our controller lacked force feedback for proper inertia
shaping during acceleration caused by external forces, we
have still showed that this method is a powerful tool in
enabling force control of the end effector. Our solution is
able to draw arbitrary paths on arbitrary surfaces, even when
we have no perception of the surface. Adding perception
improves the tracking of the trajectory, but at the cost of
slower computation. Our blind controller solution also suffers
from some distortion caused by the surface since we don’t
explicitly track the projection of the trajectory on the surface.
Nevertheless, we believe our implementation performs well,
and can be expanded to other applications, such as engraving
or cutting.

CONTRIBUTIONS

The team did it’s best to assign tasks equally, and help
eachother out when needed. Chris spent a significant effort
on implementing the impedance controller in Drake. Saim
helped implement rotation of the end effector and rotation of
the virtual dynamics parameters with input surface data. Steve
implemented the simulation setup and the normal estimation,
and Saim implemented the writing system as well as creating
the drawing surface.

REFERENCES

[1] N. Hogan, “Stable execution of contact tasks using impedance control,”
Proceedings. 1987 IEEE International Conference on Robotics and
Automation, pp. 1047–1054, 1987.

[2] T. Weingartshofer, A. Haddadi, C. Hartl-Nesic, and A. Kugi, “Flexible
Robotic Drawing on 3D Objects with an Industrial Robot,” 2022 IEEE
Conference on Control Technology and Applications (CCTA), pp. 29-36,
2022.

[3] A. Haddadi, “Robotic drawing on a 3D object,” Diploma Thesis, Wien,
2020.

[4] D. Song, T. Lee and Y. J. Kim, “Artistic Pen Drawing on an Arbitrary
Surface Using an Impedance-Controlled Robot” IEEE International
Conference on Robotics and Automation, pp. 4085-4090, 2018.

[5] StudyWolf Blog, “Robot Control 5: Controlling in the
Null Space,” https://studywolf.wordpress.com/2013/09/17/
robot-control-5-controlling-in-the-null-space/


